Mathematics: STATISTICS \& PROBABILITY

Measures of Central Tendency
mean: $\bar{x}=\frac{x_{1}+x_{2}+\ldots x_{n}}{n}$
median: the middle number
mode: the most common number

Measures of Spread

standard deviation: $\sigma=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}}$
range: $R=$ largest value - smallest value interquartile range: $I Q R=Q_{3}-Q_{1}$

Binomial Probability
$P={ }_{n} C_{r}\left(p^{r}\right)\left(\mathbf{q}^{n-r}\right)$
$n=$ trials $\quad r=$ successes
$p=$ probability of success
$q=$ probability of failure

Transforming Data
Adding c to each term

- the mean increases by c
- the standard deviation is unchanged

Multiplying each term by c

- both the mean and standard deviation will be multiplied by c

Permutations \& Combinations

$P(n, r)={ }_{n} P_{r}=\frac{n!}{(n-r)!}$
$C(n, r)={ }_{n} C_{r}=\left(\frac{n}{r}\right)=\frac{n!}{(n-r)!r!}$
order matters

- order doesn't matter

Probability of Multiple Events

Intersection	$P(A \cap B)=P(A) \times P(B)$
Union	$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
Conditional	$P(B \mid A)=P(A \cap B) / P(A)$

Probability of a Single Event
$P($ an event $)=\frac{\text { number of favorable outcomes }}{\text { total number of possible outcomes }}$

Set Theory

A

- all items in A

All items not in A

$A \cap B$

- items in A and B

$A \cup B$

- items in A or B

Graphs and Charts

Pie chart

- shows parts of a whole

Scatter plot

- shows relationships between two continuous variables

Histogram

- shows frequency of data in category or ranges

Line graph

- shows relationships between two variables and emphasizes change

Stem and leaf plot

- shows the general distribution and shape of a data set

Stem	Leaf
0	5
1	6,7
2	$8,3,6$
3	$4,5,9,5,5,8,5$
4	$7,7,7,8$
$5 \mid 12=512$	

